Perturbed Amplitude Flow for Phase Retrieval
نویسندگان
چکیده
منابع مشابه
Compressive Phase Retrieval via Reweighted Amplitude Flow
The problem of reconstructing a sparse signal vector from magnitude-only measurements (a.k.a., compressive phase retrieval), emerges naturally in diverse applications, but it is NP-hard in general. Building on recent advances in nonconvex optimization, this paper puts forth a new algorithm that is termed compressive reweighted amplitude flow and abbreviated as CRAF, for compressive phase retrie...
متن کاملRetrieval–travel-time model for free-fall-flow-rack automated storage and retrieval system
Automated storage and retrieval systems (AS/RSs) are material handling systems that are frequently used in manufacturing and distribution centers. The modelling of the retrieval–travel time of an AS/RS (expected product delivery time) is practically important, because it allows us to evaluate and improve the system throughput. The free-fall-flow-rack AS/RS has emerged as a new technology for dr...
متن کاملPhase Retrieval via Sparse Wirtinger Flow
Phase retrieval(PR) problem is a kind of ill-condition inverse problem which can be found in various of applications. Utilizing the sparse priority, an algorithm called SWF(Sparse Wirtinger Flow) is proposed in this paper to deal with sparse PR problem based on the Wirtinger flow method. SWF firstly recovers the support of the signal and then updates the evaluation by hard thresholding method w...
متن کاملPhase Retrieval Via Reweighted Wirtinger Flow
Phase retrieval (PR) is a kind of ill-condition inverse problem which can be found in various applications. Based on the Wirtinger flow (WF) method, a reweighted Wirtinger flow (RWF) method is proposed to deal with the PR problem. In a nutshell, RWF searches the global optimum by solving a series of sub-PR problems with changing weights. Theoretical analyses illustrate that the RWF has a geomet...
متن کاملPhase Retrieval via Incremental Truncated Wirtinger Flow
In the phase retrieval problem, an unknown vector is to be recovered given quadratic measurements. This problem has received considerable attention in recent times. In this paper, we present an algorithm to solve a nonconvex formulation of the phase retrieval problem, that we call Incremental Truncated Wirtinger Flow. Given random Gaussian sensing vectors, we prove that it converges linearly to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2020
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2020.3022817